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Abstract. We study a method to determine the residual conductance of a correlated system by means of
the ground-state properties of a large ring composed of the system itself and a long non-interacting lead.
The transmission probability through the interacting region, and thus its residual conductance, is deduced
from the persistent current induced by a flux threading the ring. Density Matrix Renormalization Group
techniques are employed to obtain numerical results for one-dimensional systems of interacting spinless
fermions. As the flux dependence of the persistent current for such a system demonstrates, the interacting
system coupled to an infinite non-interacting lead behaves as a non-interacting scatterer, but with an
interaction dependent elastic transmission coefficient. The scaling to large lead sizes is discussed in detail
as it constitutes a crucial step in determining the conductance. Furthermore, the method, which so far had
been used at half filling, is extended to arbitrary filling and also applied to disordered interacting systems,
where it is found that repulsive interaction can favor transport.

PACS. 73.23.-b Electronic transport in mesoscopic systems – 71.10.-w Theories and models of
many-electron systems – 05.60.Gg Quantum transport – 73.63.Nm Quantum wires

1 Introduction

Large experimental activities have recently been de-
voted to the study of the conductance of low-dimensional
nanosystems like molecules, atomic chains, nanotubes,
and quantum wires [1–5] with sizes typically of the order of
the electronic Fermi wavelength. Since the screening of the
Coulomb interaction in such systems is less effective than
in three dimensions, electronic correlations can no longer
be neglected with respect to kinetic effects. In some of the
systems mentioned, the Luttinger liquid behavior [6,7] is
relevant and might influence the electronic transport.

The correlations become particularly relevant for low
temperature transport properties like the residual conduc-
tance and the interpretation of the experimental data re-
quires a good understanding of transport through a region
with strong correlations. However, this turns out to be a
demanding task and various attempts have been made in
this direction [8,9].

The purpose of the present work is to contribute to
the fundamental problem of transport through correlated
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nanostructures by studying a novel approach where the
conductance is obtained from thermodynamic properties
of a ring consisting of the nanosystem and a long lead.
Such an embedding method has been actively pursued in
the last few years [10–16]. Here, we critically study its
hypotheses and consequences in order to put it on a firm
theoretical basis.

A powerful concept which was used for studying co-
herent transport through non-interacting systems is the
Landauer-Büttiker formalism [17,18] which formulates a
scattering problem between electron reservoirs. Although
the electrons in the reservoirs interact, their density is very
high such that the ratio between Coulomb energy and ki-
netic energy is small, and the electrons can be replaced by
non-interacting quasiparticles. Hence, the reservoirs are
well described by a Fermi distribution characterized by
a temperature and a chemical potential. Within the scat-
tering approach, the dimensionless residual conductance g
(in units of e2/h) is given by the elastic transmission prob-
ability |t(EF)|2 at the Fermi energy EF.

The situation becomes more complicated if electron-
electron interaction is present in the scattering region be-
cause the passage of electrons may lead to the creation of
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Fig. 1. The system considered within the embedding ap-
proach is a one-dimensional ring consisting of an interacting
region (grey) of length LS and a non-interacting lead (black) of
length LL. The ring is threaded by an Aharonov-Bohm flux φ.

excitations. However, for temperatures smaller than the
characteristic excitation energy of the nanosystem, the
idea of the Landauer-Büttiker formalism still applies [8]
because all accessible states in the reservoir with an en-
ergy lower than the excitation energy are occupied. In-
elastic processes are then forbidden. On the other hand,
it remains non-trivial to determine the elastic transmis-
sion probability through a correlated system. Green func-
tion methods, while being conceptually adequate, require
knowledge of the excited states and may become numeri-
cally quite involved.

An alternative approach consists in considering the
ground state properties of a ring formed by the system
of interest, which we will refer to as correlated system or
nanosystem, and a very long non-interacting lead as de-
picted in Figure 1. Within this embedding method, the rel-
evant information about the conductance can be extracted
by means of a flux threading the ring, which gives rise to
a flux dependence of the ground-state energy and thus
to a persistent current. This setup accounts for two im-
portant physical ingredients of coherent transport. First,
the flux dependence of the ground-state energy provides
information about extended states in the interacting re-
gion. Second, the two contacts between system and lead
allow to transfer electrons into the system. This is an es-
sential point in the description of conductance [19], which
is not present when the persistent current is calculated for
a correlated system without auxiliary lead.

Favand and Mila used the above described approach to
compare, within a model of spinless fermions, the tunnel-
ing conductance of molecules with a Mott-Hubbard gap
and of molecules with a dimerization gap [10]. Sushkov
used the same idea for a study of the 0.7e2/h anomaly
observed in quantum point contacts [11,20]. However, an
important difference with respect to reference [10] is that
the interaction in the leads was kept within the Hartree-
Fock approximation. As the present authors have empha-
sized [12], the extrapolation to infinite lead length can only
yield meaningful results if no interaction is present in the
auxiliary lead. Other important aspects discussed in refer-
ence [12] are the relevance of the contacts, the oscillation of
the conductance as a function of the number of sites in the
interacting region, and the role of static disorder. Meden
and Schollwöck compared the results obtained within this
approach to those of a perturbative functional renormal-

ization group and showed that both give the same results
at small values of the interaction strength, verifying scal-
ing laws associated with Luttinger liquid behavior [13,14].
Rejec and Ramšak tested the method, comparing its pre-
diction with previous results for transport through single
and double quantum dots. They presented a generaliza-
tion to systems without time-reversal symmetry, using as
an example a nanosystem which itself forms an Aharonov-
Bohm ring [15,16].

An approach related to the embedding method has re-
cently been proposed by Chiappe and Vergés [21] in which
the nanosystem and a small part of the leads are diagonal-
ized exactly. In a second step, this subsystem is attached
to semi-infinite leads and Green functions are employed to
numerically calculate the conductance. The conductance
through a one-dimensional interacting spin-system cou-
pled to non-interacting leads was also studied by Louis
and Gros by means of a Monte-Carlo based method [22].

The relationship between the conductance and the per-
sistent current of a large ring has only been demonstrated
for non-interacting scattering systems. No rigorous proof
has so far been put forward once electronic correlations
are present in the scattering region. However, the con-
ductance obtained by means of the embedding method
satisfies all basic requirements and reproduces the cor-
rect behavior in various limiting cases. Moreover, in this
work we demonstrate numerically for the one-dimensional
case that in the limit of very large ring size, the effect of
an interacting scatterer on the persistent current can be
described by the amplitude of a transmission probability
characterizing a 2 × 2 transfer matrix. Thus, transport
through an interacting region can be understood in terms
of a non-interacting scatterer with interaction dependent
parameters.

The remainder of the paper is organized as follows. In
Section 2, we use Density Matrix Renormalization Group
(DMRG) techniques to calculate the flux dependence of
the persistent current through a ring composed of an in-
teracting region and a non-interacting auxiliary lead in
the limit where the latter becomes very long. It is found
that this flux dependence reproduces the one expected for
a non-interacting ring of equal length interrupted by a
scatterer which can be characterized by a transfer matrix.

In the absence of Luttinger-like correlations in the ring
it is meaningful to consider the limit of a very long auxil-
iary lead. In Section 3 we will explain how the extrapola-
tion to infinite circumference can be performed in order to
extract the interaction-dependent transmission coefficient
and thus the conductance. For this scaling analysis, we
make use of the charge stiffness instead of the persistent
current, because it provides us with the same information
but requires less numerical effort. Specific attention will
be paid to the case of resonances, which appear when the
coupling between system and leads is small and where the
extrapolation has to be done with particular care.

In the literature, the embedding method has so far
been discussed only for the case of half filling. In Sec-
tion 4 we will present an extension to arbitrary fill-
ing. The important point is to choose the appropriate



R.A. Molina et al.: Conductance of correlated nanosystems 109

compensating background potential which ensures the cor-
rect charge density in the system even in the presence of
interactions. While at half filling, it is straightforward to
define the compensating potential from particle-hole sym-
metry, a self-consistent procedure is required away from
half filling. In Section 5, we employ this new method to
demonstrate that strong repulsive interactions can favor
zero-temperature transport through strongly disordered
systems.

We present our conclusions and perspectives in Sec-
tion 6. In Appendix A we address the flux dependence
of the ground state for a ring containing a local non-
interacting scatterer, and obtain the asymptotic values
and the finite-size corrections to the charge stiffness. In
Appendix B we extend the approach to superconducting
nanosystems and verify that the known behavior resulting
from Andreev scattering at the two extremities of a super-
conducting nanosystem is reproduced. This illustrates the
validity of the studied embedding method in an extreme
limit where an attractive electron-electron interaction has
dramatic effects.

2 Flux dependence of the persistent current
for large rings with a small scattering region

The aim of this section is to demonstrate that the trans-
port properties of an interacting region can be described
as a non-interacting scattering problem with interaction
dependent parameters. We start by considering the setup
shown in Figure 1 which will be employed to study
the transport properties of a one-dimensional system of
length LS. This system may contain a scattering potential
and, possibly, electron-electron interaction may be present
there.

The system is contacted by the two ends of an aux-
iliary one-dimensional lead of length LL so that a ring
of total length L = LS + LL is formed. From this setup,
transmission properties of the system can only be deduced
if Luttinger liquid correlations [23] in the one-dimensional
ring are absent. Therefore it is crucial that in the auxil-
iary lead no electron-electron interaction may be present.
This allows not only to avoid Luttinger liquid correlations
in the lead, but the electrons of the combined ring form a
Fermi liquid in the limit of infinite lead length. According
to Sushkov, one can demonstrate that 1d spinless fermions
on a ring form a Fermi liquid even though interactions act
in part of the ring [24]. This holds provided the size of
this region remains finite and the non-interacting lead be-
comes infinitely long. Our numerical findings presented
below support Sushkov’s argument.

Information about the transmission amplitude |t(EF)|
at the Fermi energy EF can be obtained by means of
a magnetic flux φ threading the ring. For convenience,
we introduce the dimensionless flux Φ = 2πφ/φ0 where
φ0 = h/e is the flux quantum. The many-body ground
state energy E0 of the ring will oscillate with period φ0

as a function of the flux. The magnetic flux threading the
ring breaks the symmetry between left and right moving

electrons and thus gives rise to a persistent current J(Φ),
which at zero temperature is given by J(Φ) = −∂E0/∂φ.

For non-interacting scatterers, the persistent current
J(Φ) decreases like 1/L for large circumference L of the
ring. The leading contribution is found to read [25]

J(Φ) = −evF

πL

Arccos
(|t(EF)| cos(Φ)

)
√

1 − |t(EF)|2 cos2(Φ)
|t(EF)| sin(Φ) (1)

for an odd number of particles and

J(Φ) =
evF

πL

Arccos
(|t(EF)| cos(Φ − π)

)
√

1 − |t(EF)|2 cos2(Φ)
|t(EF)| sin(Φ)

(2)
for the case of an even number of particles in the ring.
By Arccos, we denote the principal branch of the inverse
cosine function which takes values between 0 and π. The
derivation of these results is outlined in Appendix A.

The persistent currents (1) and (2) depend on the
properties of the non-interacting scatterer only through
its transmission probability |t(EF)|2 at the Fermi energy.
This important feature allows us to determine the trans-
mission probability and thus the residual conductance
of the system from the persistent current of the com-
posed ring. The relation becomes particularly simple for
Φ = π/2, where the transmission coefficient at the Fermi
energy can be expressed as [10,11,26]

|t(EF)|2 =
(

J(π/2)
J0(π/2)

)2

. (3)

Here, J0 is the persistent current for a clean ring of
length L.

We now turn to an interacting nanosystem and demon-
strate numerically that, in the limit of an infinitely long
lead, the flux dependence of the persistent current is of
the same form as in the non-interacting case of equa-
tions (1) and (2). The interaction thus enters the result
only through the transmission coefficient |t(EF, U)|2.

Specifically, we have performed direct numerical calcu-
lations of the persistent current for a tight-binding model
with N interacting spinless fermions on L sites described
by the Hamiltonian

H = −t

L∑
i=1

(c†i ci−1+c†i−1ci )+
LS∑
i=2

U [ni − V+] [ni−1 − V+] .

(4)
The hopping amplitude t between nearest neighbors will
be set to 1 and thus defines our energy scale. ci (c†i ) is the
annihilation (creation) operator at site i, ni = c†i ci is the
number operator, and the flux enters through the bound-
ary condition c0 = exp(iΦ)cL. The length scale is given
by the lattice spacing and the interaction acts between
nearest neighbors inside the sample (sites i = 1 to LS),
but vanishes in the lead. To avoid depletion of electrons
in the sample due to the repulsive interaction, we intro-
duce a compensating potential V+ that acts as a positive
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Fig. 2. The scaling of the persistent current with the total
length L is performed for a ring with system size LS = 6 at
half filling for several values of the flux Φ and the interaction
strength U . The persistent current J(Φ) is depicted for even
particle numbers N = 6, 8, 10 while for odd particle numbers
N = 7, 9, results for J(Φ̃) with Φ̃ = Φ − π are shown. The
extrapolation L → ∞ has been performed by means of fits to
second-order polynomials in 1/L.

background charge and ensures the local charge neutral-
ity. For a half-filled ring ν = N/L = 1/2, the compen-
sating potential is V+ = 1/2 since this value guarantees
particle-hole symmetry even in the presence of interac-
tions. Outside half filling, the compensating potential V+

becomes a function of U , N , LS and LL as we will discuss
in Section 4.

We have numerically investigated ground state prop-
erties of (4) by means of the DMRG method [27,28] in
implementations for real and complex Hamiltonians. Con-
vergence into the ground state is ensured by the admix-
ture of the corresponding intermediate results for the clean
non-interacting problem during the first few sweeps [29].
With the complex implementation, we are able to treat not
only the flux values Φ = 0 and Φ = π used in [12], where
the Hamiltonian (4) can be represented by a real matrix,
but also the general case of arbitrary flux where the ma-
trix becomes complex. In order to determine the persis-
tent current, we directly evaluate the current operator for
the ground state, thereby avoiding the potentially difficult
procedure of taking numerically the derivative of E0(Φ).

The length dependence of the persistent current and
the extrapolation to infinite lead length is shown in Fig-
ure 2 for particle numbers N = L/2 between 6 and 10.
Motivated by the symmetry

J(Φ; N odd) = J(Φ − π; N even), (5)

valid in the non-interacting case according to (1) and (2),
we plot the interacting results corresponding to even and
odd N at flux values Φ and Φ−π, respectively. As is shown
in Appendix A, the scaling laws for even and odd N may
be different. However, making only the flux transformation
of equation (5) allows us to obtain good asymptotic results
from a single fit to the ensemble of data points for even and
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Fig. 3. The flux dependence of the persistent current for a
system size LS = 6 and half filling is shown for interaction
strengths U = 1 and 4. The points represent DMRG results
extrapolated to the limit of infinite leads (see Fig. 2). The
lines represent the theoretical result (2) for a ring with a non-
interacting scatterer and transmission amplitudes |t| = 0.938
(solid line) and |t| = 0.425 (dotted line).

odd N . A second-order polynomial fit describes very well
the deviation of the logarithm of the persistent current
from its asymptotic value.

The results presented in Figure 2 indicate that the
symmetry (5) holds even in the presence of electron-
electron interaction and is independent of the interac-
tion strength U . This provides numerical evidence that it
should be possible to relate the persistent current in the
presence of an interacting region to the persistent current
for a non-interacting scattering problem.

The flux dependence of the persistent current J(Φ)
for an even number of particles, extrapolated to the limit
of an infinite lead, is presented in Figure 3 for moder-
ate and strong interaction, U = 1 and U = 4, respec-
tively. At the filling factor ν = 1/2 used here, the interac-
tion effects are expected to be most important. As can be
seen from Figure 3, the flux dependence of the persistent
current is described very well by the expression (2) for
the non-interacting case with transmission amplitudes of
|t| = 0.938 (solid line) and 0.425 (dotted line) for U = 1
and 4, respectively.

This demonstrates that, in the limit L → ∞, the zero-
temperature persistent current of a ring containing an in-
teracting region is quantitatively described by the persis-
tent current of a ring with a scattering region. A single
parameter, the interaction-dependent elastic transmission
coefficient at the Fermi energy |t(EF, U)|2 suffices to char-
acterize the interacting sample, at least as far as the flux
dependence of the ground state energy at zero tempera-
ture is concerned.

We emphasize that the DMRG technique employed
here to calculate the persistent current of the ground state
of the Hamiltonian (4) does not rely on any assumption.
In particular, the DMRG technique does not require that
the correlated nanosystem must be a Fermi liquid. But
the fact that the expressions (1) and (2) for the persistent
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current hold in the infinite lead length limit even in the
presence of an interacting region provides strong evidence
that the Fermi liquid behavior is retained in this limit.
This result is in agreement with the theoretical expecta-
tion mentioned above.

Our findings constitute a numerical “proof” that the
extension of the relation between persistent current and
transmission from a non-interacting to an interacting sys-
tem is correct. Assuming that the composed ring forms
a Fermi liquid, a discussion of the relation between the
persistent current and the conductance had already been
given in [16]. Together with the results of this section, this
opens a road towards the calculation of the conductance
for interacting nanosystems.

3 Conductance from transmission
for interacting scatterers

Instead of the persistent current, we will, in the following,
mostly work with the charge stiffness defined as:

D = (−1)N L

2
(
E(0) − E(π)

)
(6)

which describes the change of the ground-state energy
from periodic to antiperiodic boundary conditions. The
factor (−1)N renders D positive because the many-body
ground state is diamagnetic for odd N while it is para-
magnetic for even N . This fact was proven by Leggett [30]
for spinless fermions in the presence of arbitrary one-body
potentials and arbitrary strength of electron-electron in-
teractions. We prefer to work with the charge stiffness D
instead of the persistent current J because this allows to
use the DMRG implementation for real Hamiltonians and
thus avoids the use of the numerically more demanding
version for complex Hamiltonians.

For the case of a non-interacting scatterer, the flux
dependence of the ground-state energy is derived in Ap-
pendix A. From equations (24) and (27) it follows that in
the limit of infinite lead length we have

D =
�vF

2

[π
2
− Arccos(|t(EF )|)

]
, (7)

independent of the parity of N . Solving (7) for the trans-
mission amplitude yields [12]

|t(EF)| = sin
(

π

2
D

D0

)
, (8)

where D0 is the charge stiffness for a clean ring of length
L in the absence of electron-electron interactions. We note
that for weak transmission (|t| � 1), D is simply propor-
tional to |t|.

We have verified that the transmission coefficients cal-
culated from the stiffness using equation (8) as described
in reference [12] coincide with the ones obtained by fitting
the full flux dependence of the persistent current (Fig. 3)
to a precision better than 0.5%.
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Fig. 4. The scaling of the logarithm of the charge stiffness
with the ring size is shown for systems at half filling and
LS = 20, U = 3 (squares), LS = 12, U = 4 (diamonds),
LS = 17, U = 1 (circles), and LS = 13, U = 2 (triangles).
The lines are linear fits to the large-L behavior, providing the
extrapolation to infinite ring size, i.e. 1/L → 0.

3.1 Scaling of the stiffness and extrapolation
to infinite lead length

As already discussed in Section 2, the limit of an infinitely
long lead is required in order to obtain the conductance.
While for the persistent current we had been restricted to
rather small ring sizes, using the charge stiffness allows us
to numerically treat rings almost an order of magnitude
larger. This will enable us to take a closer look at the
scaling of the charge stiffness with 1/L, even in difficult
cases like in the presence of transmission resonances.

As the derivation of the charge stiffness as a function
of the transmission amplitude in Appendix A shows, the
charge stiffness for large rings can be expanded in powers
of 1/L. In the limit L → ∞, a non-vanishing contribution
given by (7) allows us to determine the conductance.

The leading corrections (25) and (28) for odd and
even number of particles, respectively, are of order 1/L.
Essential for the relevance of these corrections is their
dependence on the derivatives with respect to k of the
transmission |t| and the relative phase shift δα charac-
terizing the scattering region. dδα/dk is proportional to
the Wigner delay time [31]. At resonances, the two deriva-
tives may become very large. Then, only rings of circum-
ference L � d|t|/dk, dδα/dk allow to perform a reliable
extrapolation to the asymptotic limit. This situation will
be discussed in Section 3.2. Outside resonances, we found
that the extrapolation can usually be performed with rings
about three or four times as large as the scattering region.

In Figure 4, we present the deviation of the logarithm
of the charge stiffness from its asymptotic value as a func-
tion of the inverse circumference L of the ring. This plot is
the analogue of Figure 2 where the scaling of the persistent
current was depicted, but now the size of the nanosystem
is up to a factor of three larger. In all cases shown here,
we are far away from any resonance.
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The scaling with the ring size has been described by
different laws in the literature. A parabolic fit was as-
sumed in the first paper of Favand and Mila [10] while
a linear fit to the deviations of the logarithm was em-
ployed in our previous paper [12]. Different polynomial
scalings were compared by Meden and Schollwöck [13]. In
the present work, we have used a linear scaling for the
deviations of ln(D). A second-order fit becomes necessary
only when numerical limitations prevent us from attaining
sufficiently large ring sizes, as it has been the case for the
persistent current (cf. Fig. 2).

For the extrapolation of the charge stiffness in the cases
presented in Figure 4, it is sufficient to use the scaling law

D(U, LS, L) = D∞(U, LS) exp
(

C(U, LS)
L

)
(9)

to determine the asymptotic value D∞(U, LS). The con-
ductance is then obtained from (8) as

g = sin2

(
π

2
D∞
D0

)
. (10)

This procedure had been used in reference [12] to com-
pute the influence of the interaction strength on the con-
ductance of correlated nanosystems at half filling. The
conductance of a clean system decreases with the inter-
action strength (see the solid line in Fig. 8 in Sect. 4) for
even numbers of particles, and remains perfect (g = 1) for
odd numbers of particles independently of the interaction
strength.

3.2 Scaling close to transmission resonances

The leading correction (25) or (28) to the charge stiff-
ness may play an important role close to transmission res-
onances, where the Wigner delay time and d|t|/dk are
large. We illustrate the difficulties in the extrapolation
procedure present in this case by considering a nanosys-
tem separated from the auxiliary lead by two tunnel bar-
riers (cf. Fig. 5). In order to tune the Fermi energy of
the ring to a resonance, we introduce an electrostatic po-
tential V0 between the tunnel barriers of height Vb = 1.
A single-particle term Vb(n1 +nLS)+V0

∑LS−1
i=2 ni is thus

added to the Hamiltonian (4). The electron-electron inter-
action is present on all LS sites including the two barrier
sites but the lead remains non-interacting as before. We
remark that the additional potential V0 will change the
electron density in the nanosystem.

Resonances occur whenever the ground state energies
of the ring in the limit Vb → ∞ with NS and NS + 1
electrons in the nanosystem (corresponding to N−NS and
N −NS−1 electrons in the lead) coincide. In the presence
of a finite coupling to the leads, this degeneracy implies
that the energetic barrier for the transport of a particle
through the system vanishes and the transmission is one.

For the reasons discussed in the previous section (see
also Appendix A), this case is characterized by a slow con-
vergence towards the limit LL → ∞. Numerical data for

��

Fig. 5. Sketch of the site potentials used for the double bar-
rier system. Electron-electron interaction is present only on the
grey sites.
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Fig. 6. Scaling towards the asymptotic value of the stiffness
D for a weakly coupled nanosystem with LS = 10 and U = 1.
The circles, squares, and triangles correspond to electrostatic
potentials V0 = −0.8 (out of resonance), V0 = −1.4 (just to
the right of a resonance), and V0 = −1.5 (just to the left of a
resonance), respectively.

large lead lengths are then needed for a reliable extrapola-
tion because the very rapid changes of the transmission as
a function of k lead to large corrections. Another reason
consists in the difficulty to maintain the resonance con-
dition for the electron density of the nanosystem in the
scaling procedure. However, even in this unfavorable case,
the conductance can be obtained by going to larger sys-
tems and taking the asymptotic value with a greater care
than for the non-resonant case.

Figure 6 shows for the example of a double-barrier sys-
tem how one can extrapolate to the asymptotic value of
the stiffness in three cases, one favorable and two unfa-
vorable. The ratio ln(D/D∞) is given as a function of the
inverse total length of the ring. The circles correspond to
V0 = −0.8 and U = 1, situated in the valley between two
resonances where the conductance is small. In this case,
the extrapolation is straightforward and the slope is very
small. The other two cases are different. Taking V0 = −1.4
and U = 1 (depicted by squares), we are just to the right
of a resonance. The corrections to the scaling formula (9)
are very large for small ring sizes, and a naive extrapola-
tion from there can give wrong values (even g > 1) for the
conductance. In order to test that the asymptotic value
for D is approached, one calculates the parameters C and
D∞ of the scaling formula (9) for two different values of
L and one continues to increase L until the slope C and
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the asymptotic stiffness D∞ converge to constant values.
In the case V0 = −1.5 shown by triangles in Figure 6,
we have first determined C and D∞ assuming the scaling
law (9) for L = 30 and L = 40. Because the procedure
gives different results when we take L = 40 and L = 50,
we were forced to increase L. Since the values for C and
D∞ obtained with L = 120, 130 and 140 do not vary
anymore, we assume that one has reached the asymptotic
regime. This procedure can require large values of the to-
tal length L of the ring which are difficult to reach for
large filling factors ν. Using a fit with more parameters
can be an option when the convergence is slow, but the
extrapolation must be done very carefully. The behavior
of the stiffness D as a function of the length L in this last
example is quite complicated because the density in the
lead cannot be kept perfectly uniform and therefore the
resonances move as a function of the increasing size of the
ring. This extreme case illustrates the potential difficul-
ties which must be solved in order to get reliable values
for g in the vicinity of transmission resonances from this
method. For V0 = −1.5 (just to the left of a resonance),
the slope has changed sign and we still need to go to big
ring sizes for a reliable extrapolation.

In Figure 7a we depict the results for the conductance,
evaluated using the previous extrapolations for the two-
barrier system. We compare the results for U = 0 and
U = 1. The values for U = 0 have been obtained in the
same way as the values for U = 1, using DMRG and the
extrapolation. They are found to agree with results from a
non-interacting Green function calculation. The fact that
we do obtain perfect conductance (g = 1) at resonances
supports our claim that the asymptotic procedure is ca-
pable of yielding the correct transport properties. In Fig-
ure 7b we show the slope C(U, LS) of the scaling law (9).
As one can see, the resonance structure is clearly reflected
by the slope of the scaling curves. The jumps in the slope
coincide with the values for which the dimensionless con-
ductance approaches its maximum value of one. The slope
is closely related to the behavior of d|t|/dk. As expected,
the interaction U changes the position of the peaks and
their widths.

4 Conductance outside half filling

As stated in the introduction, most of the applications
of the embedding method have so far been restricted to
half filling. In the previous section, we have maintained
on average half filling over the composed ring, but the
filling of the correlated system itself depended on the po-
tential V0 between the barriers. In this section, we extend
the embedding method to the case where the filling in the
composed ring has an arbitrary value ν, concentrating on
nanosystems well coupled to the lead.

By choosing the particle number N = νL, we fix the
average filling in the entire ring and thus the Fermi en-
ergy at which the conductance is evaluated. However, the
interaction influences the filling in the nanosystem. This
can be compensated by an appropriate choice of the po-
tential V+ in (4). As argued earlier, in the special case of
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Fig. 7. (a) Conductance g and (b) slope C(U, LS = 10) of
the scaling law (9) are shown as a function of the electrostatic
well potential V0 for the configuration of Figure 5. Results for
interaction strength U = 1 are indicated by full symbols and
a solid line. The open symbols and the dotted line represent
results for the non-interacting case (U = 0).

half-filled systems the compensating potential V+ = 1/2
is known a priori. In contrast, outside half filling, V+ de-
pends in a non-trivial way on the interaction strength and
the ring size.

In order to determine V+ for a given set of system pa-
rameters, we begin with an initial guess for V+. Then, by
means of a DMRG run during which V+ is kept constant,
the number of particles contained inside the nanosystem
is determined and an improved value for V+ is estimated.
This step is repeated within a Newton-Raphston itera-
tion until the desired filling ν in the correlated system is
reached.

For LS = 8, ν = 3/8 and U = 3, V+ varies from
0.1924 to 0.1939 as LL is doubled from 24 to 48. At a
fixed interaction strength, the dependence of V+ on LL

becomes negligible beyond a certain LL and can then be
ignored. Therefore, the iterative procedure has only to be
performed until a limiting value for V+ has been attained.
Then this value can be kept for larger ring sizes from which
C and D∞ are determined, using the same scaling law as
at half filling.

In Figure 8, the conductance of a nanosystem of length
LS = 8 perfectly coupled to the lead is given as a function
of the interaction strength U at different filling factors ν.
Since the filling is kept uniform everywhere in the ring, the
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Fig. 8. Conductance as a function of U for different filling
factors ν of a correlated system of size LS = 8.

curves characterize g(EF, U) at the corresponding Fermi
energy EF. At ν = 1/8 (short dashed line), in average
only one particle is left in the nanosystem. In the absence
of other particles to interact with, the dimensionless con-
ductance therefore equals one, independently of the inter-
action strength. For larger filling factors, the conductance
g decreases with increasing interaction strength U and
this decay becomes more pronounced as the filling factor
is increased. The rather sharp drop of the conductance
occurring at half filling around U = 2 is a precursor of
the Mott transition expected in the thermodynamic limit.
The conductance above half filling can be obtained from
g(ν) = g(1 − ν) as a consequence of particle-hole sym-
metry. The influence of the interaction strength on the
conductance is thus the strongest at ν = 1/2, as expected.

5 Conductance for disordered nanosystems

Having demonstrated that the conductance of a correlated
nanosystem can be obtained from the charge stiffness af-
ter embedding it into a large noninteracting ring, we now
apply this method to the problem of interacting electrons
in disordered systems. The effect of repulsive interactions
in a disordered system is a controversial issue [32]. It is
often believed that interactions impede transport. This
belief comes from perturbative arguments showing that
interactions reduce the density of states at the Fermi level
of a disordered metal [33] and open a gap for a strongly
disordered insulator [34]. On the other hand, in the strong
disorder limit zero temperature transport can be enhanced
by an interaction-induced delocalization of the many-body
ground state. This was demonstrated for the special case
of half filling in reference [12]. In the following, we will
study the role of the filling factor in the delocalization
process.

We include the disorder potential into the Hamilto-
nian (4) by adding a term

Hdis = W

LS∑
i=1

vini, (11)
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Fig. 9. Scaling towards the asymptotic value of the stiffness
D for disordered samples (W = 5). For the same disorder re-
alization, two values of the interaction are shown for half fill-
ing. Open triangles represent U = 4 and open circles the case
U = 1. The negative slope in the former case corresponds to a
charge reorganization and the conductance g = 0.34 for U = 4
is greater as compared to g = 0.018 for U = 1. Results for
the same disorder configuration with U = 4 and ν = 3/8 are
displayed with filled triangles. The conductance in this case
is g = 0.0011, demonstrating that the charge reorganization
depends on the filling.

where W denotes the disorder strength, and the vi are in-
dependent random variables, equally distributed within
the interval [−1/2, 1/2]. The disorder potential is only
present within the nanosystem of length LS.

We start by verifying that the scaling towards infinitely
large rings also works in the presence of disorder. Figure 9
depicts the dependence of the logarithm of the charge stiff-
ness D on the ring size L for a sample with W = 5 for
interaction strengths U = 1 (circles) and 4 (triangles). The
disorder realization is the same in both cases. The open
symbols refer to ν = 1/2 while the full symbols correspond
to ν = 3/8. In all cases the scaling works well, and thus
reliable values for the conductance can be extracted.

The analysis of individual samples helps us to un-
derstand the physical mechanisms involved when disor-
der and interactions are both relevant [35,36]. Studying
the evolution of the ground state energy or the electron
density as a function of U , we can detect charge reor-
ganizations at critical values of the interaction strength.
For the sample shown in Figure 9 we have, at half fill-
ing, a charge reorganization in the ground state struc-
ture around U = 4. Charge reorganizations appear when
a ground state configuration which is well adapted to the
non-interacting case, where the fermions are located in
the minima of the disorder potential, changes towards a
Wigner-like crystalline structure which is energetically fa-
vorable at strong repulsive interaction. This resonant sit-
uation increases the conductance at the particular (sam-
ple dependent) crossover value of the interaction. In other
samples the charge reorganizations can occur at different
values of the interaction or can even be absent, depending
on the disorder realization. Reducing the filling makes the
charge reorganizations less likely. In the disordered case,
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Fig. 10. Logarithmic ensemble average of the conductance as
a function of the nearest neighbor repulsion U for a disordered
nanosystem of length LS = 8 at half filling (open symbols) and
ν = 3/8 (full symbols). The triangles, circles and diamonds
indicate W = 1, 5 and 9, respectively. The dotted and dashed
line correspond to ν = 1/2 and 3/8, respectively, in the absence
of disorder (W = 0).

we typically obtain a negative slope for the asymptotic
scaling of D when we are close to a charge reorganiza-
tion. This sign is due to the degeneracy of different charge
configurations in the nanosystem as in the case of clean
systems with odd number of particles [12].

In Figure 10, the ensemble average of the logarithm
of g is given as a function of U for disorder strengths W =
1 (triangles), W = 5 (circles), and W = 9 (diamonds) and
filling factors ν = 1/2 (open symbols) and ν = 3/8 (full
symbols).

The results for half filling (dotted line and open sym-
bols) show the suppression of the conductance at strong
interaction reminiscent of Mott insulating behavior. This
decay of the typical value of g as a function of U is faster
than for ν = 3/8 (dashed line and full symbols). On the
other hand, a random potential in the nanosystem results
in the reduction of the typical conductance at U = 0 due
to Anderson localization effects which is more important
outside half filling. The different filling dependence of dis-
order and interaction effects on the conductance gives rise
to a crossing of the curves with ν = 1/2 and ν = 3/8
at U ≈ 1 in the case of weak disorder W = 1. For
stronger disorder, this crossing occurs at larger values of U
(U = 4.5 for W = 5) and for very strong disorder (W = 9)
the crossing cannot be observed in the figure.

Most importantly, we can see in Figure 10 that in the
strong disorder case (here W = 9), nearest neighbor in-
teractions can favor transport. This enhancement of the
typical elastic transmission, and hence of the zero tem-
perature conductance, is maximal around U = 0.5 and,
though mainly characteristic for half filling, it persists out-
side ν = 1/2.

The charge reorganization induced by repulsive in-
teractions in strongly disordered systems and its associ-
ated delocalization effect were first observed in the per-
sistent current of nanosystems [35,36] forming a ring

(without the auxiliary lead introduced within the embed-
ding approach). As our results demonstrate, the same ef-
fects can be found in the conductance g. Considering a
given nanosystem, one observes a similar resonance struc-
ture [12] as for the persistent current [35,36], although the
individual peaks are wider for the conductance than for
the persistent current.

6 Summary

The residual conductance of a correlated nanosystem can
be obtained from the charge stiffness or from the persistent
current of a ring composed of the system and an auxiliary
non-interacting lead. Using DMRG for spinless fermions,
we have numerically studied basic properties of this em-
bedding approach. In particular, we have demonstrated
that the flux dependence of the persistent current for an
interacting system and a non-interacting lead agrees with
the flux dependence of a non-interacting ring with a scat-
terer in the limit of infinite lead length. This allows to
extract the interaction dependent transmission coefficient
of the interacting system and hence its residual conduc-
tance.

A detailed analysis of the finite-size corrections has
been performed for the charge stiffness. The main features
of these corrections can be understood from the analysis
of the non-interacting case. Away from transmission res-
onances, we obtain a very good scaling behavior already
for not too large lead lengths, and the conductance of the
correlated nanostructure can be readily obtained. Close
to resonances the asymptotic limit of large lead lengths
is problematic and only by considering very long leads
we obtain the correct asymptotic behavior. Even in these
special cases, the results for the conductance agree with
our expectation for the resonant tunneling behavior in a
double barrier structure.

Only at half filling, it is straightforward to keep the
electron density in the correlated system fixed when
changing the ring size. We have demonstrated that an ex-
tension of the method to arbitrary filling factors is feasible
provided the compensating potential is adjusted appropri-
ately. For clean samples, it was observed that the decrease
of the conductance with increasing interaction strength is
strongest at half filling and becomes weaker as the filling
factor changes towards smaller or larger values.

Another extension consists in the introduction of dis-
order in the correlated system. Charge reorganizations of
the ground state appear at sample-dependent values of
the interaction strength, affecting the long lead scaling
and the asymptotic values. In the ensemble averages, we
obtain for weak disorder a decreasing conductance as a
function of the interaction strength. However, for strong
disorder we have shown that a nearest neighbor repulsion
can enhance the average of the logarithm of the conduc-
tance for spinless fermions in one-dimensional samples.
This enhancement persists outside half filling, although it
becomes weaker.

So far, the approach is still limited to spinless fermions
and single-channel leads, although the system itself can
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be arbitrary. Nevertheless, the method is well suited to
study the role of the contacts between the nanosystem
and the leads. Furthermore, interesting phenomena like
even-odd oscillations of the conductance with the num-
ber of fermions were found with this approach [12,37]. In
the absence of spin-flip scattering, the generalization to
electrons with spin is straightforward. Indeed, first cal-
culations for the Hubbard model have already been per-
formed [12], yielding a good scaling behavior. These and
further issues will be explored in more detail in future
work.

RAM wishes to thank J. Ségala for reminding him of some
properties of the Chebyshev polynomials. We gratefully ac-
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Appendix A: Flux dependence of the ground
state energy for large rings with a small
non-interacting scattering region

In this appendix, we discuss the flux dependence of the
ground state energy for a ring containing a non-interacting
scatterer. The scattering region of length LS is connected
to a disorder-free lead of length LL. This arrangement is
closed to a ring of total length L = LS + LL as shown
in Figure 1. We present a systematic expansion in pow-
ers of 1/L starting from the limit of infinite lead length
for the flux-dependent part of the ground state energy.
This leads to analytic expressions for the asymptotic val-
ues of the persistent current and the charge stiffness as in
reference [25]. We extend this theory by calculating the
first finite-size corrections to the flux-dependent part of
the energy and the charge stiffness. These corrections are
important to understand the way in which the asymptotic
values are approached when we extrapolate to infinite ring
size.

The one-particle eigenenergies of the ring are given by
the quantization condition

det (I − MLMS) = 0, (12)

where MS and ML are the transfer matrices of the system
and the lead, respectively. In the presence of time-reversal
symmetry, the transfer matrix of a one-dimensional scat-
terer can be expressed in terms of three independent an-
gles α, θ and ϕ as

MS =

(
1/t∗ r∗/t∗

r/t 1/t

)

=
1

sin ϕ

(
eiα/ sin θ −i cot θ + cosϕ

i cot θ + cosϕ e−iα/ sin θ

)
, (13)

where the two components correspond to right and left
moving particles while r and t are the reflection and trans-
mission amplitudes, respectively. The angle α is the phase-
shift associated with the scattering region. Whenever the

right-left symmetry is respected, we can set ϕ = π/2, and
the expression of MS simplifies considerably. However, this
symmetry requirement is not satisfied for disordered sam-
ples. In the general case the transmission amplitude is
given by t = eiα sin θ sin ϕ.

The transfer matrix of a lead of length LL for a state
with wave number k ≥ 0 reads

ML = exp (iΦ)

(
exp(ikLL) 0

0 exp(−ikLL)

)
. (14)

Here, we have made use of the fact that the flux can be
transformed into a boundary condition which may be pre-
scribed in the lead.

Inserting the transfer matrices (13) and (14), the eigen-
value condition (12) yields

cos(Φ) =
1

|t(k)| cos
(
kL + δα(k)

)
. (15)

Here, we have introduced the phase shift δα = α − kLS

of the scattering region relative to a perfect lead of the
same length LS. The solution of (15) yields the quantized
momenta k of the energy eigenstates in the lead.

Since both, t and δα are functions of k, it is in general
impossible to obtain an analytic solution of (15). However,
progress can be made in the asymptotic limit of large L,
which was worked out by Gogolin and Prokof’ev [25] in
their study of the persistent current. We extend their ap-
proach to calculate the first finite-size corrections of the
charge stiffness. Furthermore, a generalization to arbitrary
dispersion relation in the lead allows us to discuss contin-
uum and tight-binding models at the same time.

The eigenvalue condition (15) can be rewritten as

k = k0
n +

1
L

f±(k, Φ). (16)

Here, k0
n = 2πn/L with n ≥ 0 denotes the eigenvalues in

the case of perfect transmission with |t| = 1 and δα = 0.
Following the notation of reference [25], we have further-
more introduced

f±(k, Φ) = ±Arccos (|t(k)| cosΦ) − δα(k). (17)

Arccos denotes the principal branch of the inverse cosine
function that takes values in the interval [0, π]. In order to
ensure a positive value for k, f−(k, Φ) should not be used
for the case n = 0. The splitting of the solutions of (16)
corresponding to “+” and “-” cannot exceed the spacing
2π/L between the k0

n, provided that δα(k) is smooth on
this scale. This is the case in the limit L → ∞ and ensures
that the order of the solutions with respect to energy is
given by n.



R.A. Molina et al.: Conductance of correlated nanosystems 117

Iterating (16) and expanding f± for large systems, we
obtain the expansion

k±
n =k0

n +
1
L

f±(k0
n, Φ)

+
1
L2

f±(k0
n, Φ)

(
∂f±(k, Φ)

∂k

)
k=k0

n

+
1

2L3

∂

∂k

(
f2
±(k, Φ)

∂f±(k, Φ)
∂k

)
k=k0

n

+ O

(
1
L4

)
(18)

for the solutions of (16) in powers of 1/L. Such an ex-
pansion is problematic in the vicinity of resonances, when
dδα/dk and d|t|/dk are very large. Then, the expansion
is valid only for sufficiently large L.

We now calculate the ground state energy of the sys-
tem as a function of the flux to order 1/L2. The dispersion
relation in the perfect lead will be denoted by ε(k). Us-
ing (18), we start by expanding the one-particle energies
in powers of 1/L and obtain

ε(k±
n ) =ε(k0

n) +
1
L

(
∂ε

∂k
f±(k, Φ)

)
k=k0

n

+
1

2L2

∂

∂k

(
∂ε

∂k
f2
±(k, Φ)

)
k=k0

n

+
1

6L3

∂2

∂k2

(
∂ε

∂k
f3
±(k, Φ)

)
k=k0

n

+ O

(
1
L4

)
.

(19)
For an odd number N of spinless electrons in the ring,

all occupied states n come in pairs ([n,-] and [n,+]), except
for the one corresponding to n = 0. The total ground state
energy then reads

Eodd
0 (Φ) = ε(k+

0 ) +
nF∑

n=1

[ε(k+
n ) + ε(k−

n )]

= ε(0) +
1

2L2

(
∂2ε

∂k2
[Arccos(|t| cosΦ) − δα]2

)
k=0

+
nF∑

n=1

{
2ε(k0

n) − 2
L

(
∂ε

∂k

)
k=k0

n

δα(k0
n)

+
1
L2

∂

∂k

(
∂ε

∂k

[
Arccos2(|t| cosΦ) + δα2

])
k=k0

n

− 1
3L3

∂2

∂k2

(
∂ε

∂k

[
3δαArccos2(|t| cos Φ) + δα3

])
k=k0

n

}

+ O

(
1
L3

)
.

(20)
The sum runs up to nF = (N − 1)/2. We have assumed
(∂ε/∂k)k=0 = 0 and kept all terms which can give rise to
contributions up to order 1/L2. The first term in the sum
is the ground state energy in the absence of scattering. For
finite filling, i.e. for N of order L, it is proportional to L
while the second term representing the energy change due
to the scattering potential is of order 1. The third and
fourth terms are the leading flux-dependent corrections.

Since we are interested in the persistent current and the
charge stiffness, these are the only terms in the sum which
need to be considered further. Converting the sums over n
into integrals, these flux-dependent contributions can be
expressed as

1
2πL

kF +π/L∫
π/L

dk
∂

∂k

(
∂ε

∂k
Arccos2(|t| cosΦ)

)

=
�vF

2πL
Arccos2

(|t(kF )| cos(Φ)
)

+
1

2L2

{
∂

∂k

(
∂ε

∂k
Arccos2(|t| cos Φ)

)
k=kF

−
(

∂2ε

∂k2
Arccos2(|t| cosΦ)

)
k=0

}

+ O

(
1
L3

)
(21)

and

− 1
2πL2

kF +π/L∫
π/L

dk
∂2

∂k2

(
∂ε

∂k
δαArccos2(|t| cosΦ)

)

= − 1
2πL2

{
∂

∂k

(
∂ε

∂k
δαArccos2(|t| cosΦ)

)
k=kF

−
(

∂2ε

∂k2
δαArccos2(|t| cos Φ)

)
k=0

}

+ O

(
1
L3

)
, (22)

respectively. Here, kF = 2πnF/L is the Fermi wave num-
ber and vF = (∂ε/�∂k)k=kF is the Fermi velocity. Taking
the derivative of the leading flux-dependent term of the
ground state energy

E
odd(1)
0 (Φ) =

�vF

2πL
Arccos2

(|t(kF)| cos(Φ)
)

(23)

with respect to the flux φ, one obtains the asymptotic form
of the persistent current given in (1) for an odd number of
particles. The leading order of the charge stiffness of (7)
is obtained as

D(1) = −L

2

(
E

odd(1)
0 (0) − E

odd(1)
0 (π)

)
=

�vF

2

[π
2
− Arccos(|t(kF)|)

]
. (24)

As we will show below, this last result is independent of
the parity of the number of particles.

The first finite-size correction to these asymptotic val-
ues follows from the second-order contribution E

(2)
0 to the

total energy. Using the terms of order 1/L2 from (21)
and (22), and taking into account the contribution from
the particle in the state [0, +] in the second line of (20),
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we obtain the correction to the charge stiffness for an odd
number N of particles

Dodd(2) = −L

2

(
E

odd(2)
0 (0) − E

odd(2)
0 (π)

)

= − 1
2L

{([
∂2ε

∂k2
(δα − π) + �vF

dδα

dk

](π

2
− Arccos(|t|)

)

+ �vF(δα − π)
d|t|
dk

1√
1 − |t|2

)
k=kF

+
(

∂2ε

∂k2
δα
(π

2
− Arccos(|t|)

))
k=0

}
.

(25)
The last term vanishes if we assume that |t(k = 0)| = 0.

In order to treat also the case of an even number of
particles, we subtract the contribution of the particle in
the one-body state [nF, +] from the total energy of equa-
tion (20) and obtain

Eeven
0 (Φ) =Eodd

0 (Φ) − ε(k+
nF

)

=Eodd
0 (Φ) − ε(kF) − 1

L

(
∂ε

∂k
f+(k, Φ)

)
k=kF

− 1
2L2

∂

∂k

(
∂ε

∂k
f2
+(k, Φ)

)
k=kF

+ O

(
1
L3

)
.

(26)
With these additional terms, one obtains the leading

flux-dependent term of the ground state energy for an even
number of particles as

E
even(1)
0 (Φ) =

�vF

2πL
Arccos2

(|t(kF)| cos(Φ − π)
)
. (27)

The derivative with respect to φ leads to the asymptotic
form of the persistent current of equation (2) for an even
number of particles, and the result for the leading contri-
bution to the charge stiffness agrees with (24).

For the first finite-size correction to the stiffness we
obtain

Deven(2) =
L

2

(
E

even(2)
0 (0) − E

even(2)
0 (π)

)

= − 1
2L

{[
∂2ε

∂k2
δα + �vF

dδα

dk

] (π

2
− Arccos(|t|)

)

+ �vFδα
d|t|
dk

1√
1 − |t|2

}
k=kF

, (28)

which differs from the case of an odd number of parti-
cles (25).

From equations (25) and (28) one can see that the
1/L scaling for approaching the asymptotic values of the
stiffness is problematic close to resonances, where dδα/dk
and d|t|/dk are large, and |t| approaches 1. Assuming an
isolated Breit-Wigner resonance [38], the Wigner time is
proportional to g and the corrections D(2) are essentially

given by the half width of the resonance. Outside reso-
nances where δα � 1 and for small |t|, the leading correc-
tion to the stiffness can be approximated by

D(2) ≈ − 1
2L

�vF|t|dδα

dk
. (29)

Therefore, one obtains for this case

ln
(

D

D∞

)
≈ ln

(
D(1) + D(2)

D(1)

)
� − 1

L

dδα

dk
, (30)

and the Wigner time gives the slope of the scaling curve.
The above arguments are valid in the non-interacting case.
However, the intuition developed in this case is also useful
to interpret our numerical results for the interacting case.

Appendix B: Conductance of a NSN region
from persistent current

In this appendix we treat the case of a superconductor
between two metallic leads. This is a striking example of
a correlated system exhibiting non-Fermi liquid behavior.
It will be demonstrated that the correct result for the
conductance can be obtained from the persistent current
by means of (3).

B.1 Double Andreev scattering

The Andreev scattering at a NS junction, i.e. the interface
between a normal metal and a superconductor, is a well-
known phenomenon. In an Andreev scattering process, an
electron coming from the normal metal is reflected as a
hole while a Cooper pair moves on in the superconductor.
The linear conductance of the interface between the nor-
mal metal and the superconductor in the one-channel case
is given by

G =
4e2

h

T

2 − T
, (31)

where T is the transmission probability in the normal
metal [39,40]. For the normal lead, T = 1 and one finds
that the resistance of a single normal-superconductor in-
terface is the half of the resistance without interface.

In the following, we will consider a NSN double junc-
tion consisting of a clean superconducting layer of thick-
ness LS connected to normal-metal electrodes by perfect
interfaces. It is assumed that the superconducting gap
∆(x) jumps at the interface from zero in the normal metal
to its full value ∆ inside the superconductor

∆(x) = ∆Θ(x)Θ(LS − x), (32)

where Θ(x) is the step function. This approximation is
common in the treatment of mesoscopic superconduc-
tors [41]. Blonder, Tinkham and Klapwijk [42] calculated
the conductance by solving the Bogoliubov-de Gennes
equation with this rigid-boundary condition and found for
T = 1 the linear conductance G = 2e2/h. This result can



R.A. Molina et al.: Conductance of correlated nanosystems 119

be understood by taking two Andreev interfaces with con-
ductance (31) in series.

When we close the two normal metal leads of the NSN
junction to a ring, we recover the geometry of the embed-
ding method where the correlated system is formed by the
superconductor. It is therefore interesting to see how one
can recover the linear conductance from this approach.

B.2 Persistent current and conductance
of a superconductor

For a one-channel ring consisting of a normal conduct-
ing region of length LN and a superconducting region of
length LS, the solution of the Bogoliubov-de Gennes equa-
tion for a boundary condition analogous to (32) yields the
persistent current [43,44]

J(Φ) =
4
π

evF

LN + ξ0 tanh(LS/ξ0)

∞∑
m=1

Tm(X)
m

sin(mΦ).

(33)
Here, ξ0 = �vF/∆ is the superconducting coherence length
and Tm(X) denotes a Chebyshev polynomial in the vari-
able

X =
cos(kFL)

cosh(LS/ξ0)
. (34)

In the limit ξ0 → ∞, one obtains a normal conducting
ring of length L = LN + LS with the persistent current

J0(Φ) =
2
π

evF

L

∞∑
m=1

1
m

[
sin
(
m(Φ − kFL)

)
+ sin

(
m(Φ + kFL)

)]
. (35)

Apart from a factor of two accounting for the spin, this
expression reduces to (1) or (2) for |t| = 1 depending on
the parity of the number of particles per spin. We note,
however, that the expression (33) for the NS ring can, in
general, not be expressed in the form (1) or (2).

According to (3), the dimensionless conductance g can
be obtained from the persistent current at flux Φ = π/2

J(π/2) =
2
π

evF

LN + ξ0 tanh(LS/ξ0)

×
∞∑

m=1

1
m

{
sin
[
m
(π

2
− Arccos(X)

)]

+ sin
[
m
(π

2
+ Arccos(X)

)]}
.

(36)
By means of the Fourier representation of a sawtooth func-
tion, one finds that the absolute value of the persistent
current becomes

J(π/2) =
evF

LN + ξ0 tanh(LS/ξ0)
. (37)

In view of this result, the superconducting region can be
thought of as a normal-conducting metal of an effective
length given approximately by the minimum of LS and ξ0.

It is now straightforward to determine from (37) the
dimensionless conductance

g = lim
LN→∞

(
J(π/2)
J0(π/2)

)2

= lim
LN→∞

(
LN + LS

LN + ξ0 tanh(LS/ξ0)

)2

. (38)

Here, the persistent current of the normal ring can again
be thought of as being obtained from (37) in the limit
ξ0 → ∞. We thus recover the correct result g = 1 for
the dimensionless conductance. The leading corrections
depend on the ratio [LS−ξ0 tanh(LS/ξ0)]/LN between the
relative length of the superconductor, i.e. the difference
between the real length of the superconducting region and
its effective length, and the length of the normal region.
Even though here the transmission amplitude remains
equal to one in the presence of correlations, this example
gives another demonstration that the embedding meth-
ods works, even for determining the conductance through
a system which is very far from exhibiting a Fermi liquid
behavior.
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